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Abstract

Given experimental data and a priori assump-
tions on nominalmodel and a linear fractional trans-
formation uncertainty structure, feasible conditions
for model validation is given. All unknown but
bounded exogenous inputs are assumed to occur at
the plant outputs. With the satisfaction of the feasi-
ble conditions for model validation, it is shown that a
parameterization of all model validating sets of plant
models is possible. The new parameterization can
be used as a basis for the development of a system-
atic way to construct model validating uncertainty
models which have speci�c linear fractional trans-
formation structure for use in robust control design
and analysis. The proposed feasible condition (exis-
tence) test and the parameterization is computation-
ally attractive as compared to similar tests currently
available.

1 Introduction

1.1 Motivation

In applyingmultivariable robust control analysis and
synthesis techniques to linear, time-invariant sys-
tems, as in for example [1], a \robust control design
model" (a particular set of plant models described
by a nominal model and norm bounded model un-
certainty and exogenous inputs) is required a priori.
Nominal models are usually associated with a single
\best" model, although what is considered \best" is
debatable. Mathematical models derived from �rst
principles are typically used as nominal models or
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sometimes identi�ed from system identi�cation ex-
periments. In some cases where the physical con-
ditions are not accurately or reliably known due to
causes unknown or when simple models are desir-
able, it makes sense to require that the set of plants
in question at least satisfy model validation condi-
tions in the frequency domain [2] and/or time do-
main [3] with respect to available measurement data.

1.2 Relation to Earlier Work

There exists a wealth of literature related to model
validation, uncertainty modeling and identi�cation
for control (see for example the Special Issue on
System Identi�cation and Control in IEEE Trans-
actions [4]). Unfortunately, it appears that there is
not a systematic methodology that can be demon-
strated to work for a signi�cant class of problems.
For brevity, we highlight only closely related earlier
work to our approach. Indeed, our approach is ba-
sically an extension of a special case formulated in
[2]. This special case involves the assumption that
all exogenous inputs occur at the plant output.

The basic question posed in [2] to [6] is: given
a robust control design model, does a plant exists
within this set which will reproduce a given input
and output measurements? This model validation
question can be viewed as a check on two proper-
ties. First, the choice of uncertain parameters and
the corresponding postulated uncertainty connec-
tion leading to the Linear Fractional Transformation
(LFT) structure must be su�ciently rich to admit
a perturbed model (however large the uncertainty
bound must be) about the given nominal that will
faithfully reproduce the observed output data from
the given input data. Second, assuming the �rst
property is satis�ed, the postulated norm bound on
the model uncertainty and exogenous disturbance
must be su�ciently large to admit a model validat-
ing plant.

The viewpoint taken in this paper with regards
to model validation is to focus on the �rst property,
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i.e., whether an a priori given LFT structure for
an uncertainty model with some noise allowance can
lead to a model validating set. In the seminal work in
[2], the �rst property is referred to as the \feasible"
condition. The rationale for the above viewpoint is
twofold: (1) the model validation question becomes
obviously simpler to address, and (2) once a feasible
interconnection structure for uncertainty is found,
a model validating set can always be constructed,
using the results in this paper. Hence, our viewpoint
di�ers from the more prevalent binary test for model
validation given both interconnection structure and
a priori uncertainty bounds. Our novel viewpoint
also alleviate the dilemma of what to change if a
model validation test fails.

In an earlier attempt to obtain a simpler prob-
lem formulation and solution than the approach
taken by [2] to [6], [7] considered a special case where
all exogenous inputs are either known or are very
small and occurs only at the output. This simpler
formulation has been extended to closed loop sys-
tems in [8] and subsequently applied to a challeng-
ing experimental testbed with very encouraging re-
sults [9]. Recognizing the dependence of minimum
norm model validating uncertainty bounds on the
input directions for multivariable uncertainties, [10]
formulated a min-max problem to address this. Al-
though the approach taken in [7] to [10] appears
to work reasonably well for problems with an arbi-
trary number of structured full complex blocks only,
it became clear through applications that problems
with parametric (and often repeated) uncertainties
gave unsatisfactory results. This was somewhat ex-
pected because the additional structure in the re-
peated scalar uncertainties were not incorporated in
the original problem formulation. Hence, the most
recent work reported in [11] extends the previous ap-
proach to include repeated scalar parametric uncer-
tainties along with an arbitrary number of full com-
plex blocks. This paper provides the detail proofs
omitted in [11], expands the uncertainty set to in-
clude unknown but bounded output noise, and ulti-
mately parameterize all model validating sets for a
�xed LFT structure.

1.3 Outline of Paper

In Section 2, a problem de�nition is given whereby
uncertainty bounds are viewed as bounds on �cti-
tious uncertainty signals which satis�es P�� trans-
mission conditions while resulting in zero output er-
rors. In Section 3 we derive existence conditions
for model validation followed by parameterizing all
model validating uncertainty sets with respect to

a priori assumptions on the noise and uncertainty
structure. In Section 4, we brie
y outline the pos-
sibilities in utilizing the parameterizations given in
Section 3. Section 5 is a summary of results and
�nal remarks.

2 Problem De�nition

For a given physical system which happens to be
approximately linear and time-invariant, suppose we
have measurements of its inputs, u, and the outputs,
y, (see Figure 1). The corresponding model output,

-
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Figure 1: Block diagram for open loop robust ID

~y, is a sum of simulated noise through a noise �l-
ter, V , and the output from an upper LFT model,
Fu(P;�), which depends on an augmented plant, P ,
and structured uncertainty, � 2 D, where

D := f� 2 Cm�n : � = diag(�1; . . . ;�� );
�i 2 Cmi�nig

(1)

and � denotes the number of uncertainty blocks.
Suppose the measurements are taken in the

discrete-time domain and consider a discrete fre-
quency domain formulation, so called Constant Ma-
trix case in [2]. For simplicity, we assume that a
discrete Fourier transform has been performed and
do not consider the additional a�ects of realistic sig-
nal conditioning operations typically performed on
the raw discrete-time signals (see for example [12]).

Since we are primarily concerned with the size
of the uncertainty blocks, note fromFigure 1 that an
uncertainty bound in terms of its maximum singular
value can be written as a ratio of norms

��(�) := sup
�0

k��0k

k�0k
�
k�k

k�k
(2)

where k � k rep-
resent the Euclidian norm of its vector argument.
For uncertainty bounds on components, let
col(�1; � � � ; �� ) and col(�1; � � � ; �� ) be the partitioning
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of the vectors � and � which conform to the block
diagonal partition of � in Equation (1). Then, since

��(�) = max
1�i��

��(�i); (3)

it is of interest to note that

��(�i) := sup
�0
i

k�i�
0
ik

k�0ik
�
k�ik

k�ik
1 � i � � : (4)

Of course �ctitious signals � and � cannot be mea-
sured nor are they arbitrary so that it is necessary
to look at their dependence on real signals u and y
and their transmission through a postulated system
P at each frequency. The signals, � and �, whose
norm ratios determine the uncertainty sizes must
be consistent with their transmission through the
augmented plant and also reproduce the measured
inputs and outputs with some help from simulated
output noise.

The output error is given by

ey := y � ~y = eoy � V � � P21� (5)

where eoy := y � P22u denotes the nominal output
error due to the nominal plant. The terms, V � and
P21� in Equation (5) represent the uncertainty free-
doms in an attempt to negate or \explain" the ef-
fect of nominal output error. These two terms cor-
respond to simulated measurement noise at output
and LFT structured uncertainty model.

De�nition (Model Validation [2]):
Given measurements of the input and output

signals, u and y, a noise �lter, V , an augmented
nominal plant model, P , and a matrix of structured
uncertainty norms,W , the set of plants (robust con-
trol design models)

SW = f� 2 D : � =W�B ; ��(�B) � 1g

is said to be a model validating set (of plant models)
if it contains a plant � such that there exists an error
signal, �, with k�k � 1 for which

y = Fu(P;�)u+ V �: (6)

Notice that in the above de�nition, W denotes
the radii of the structured uncertainty unit ball as
de�ned by ��(�B) � 1. In short, a set of plants is
model validating if it can reproduce the given mea-
surements while subject to a priori constraints. Of
course, as noted earlier [2]-[6], one can never really
\validate" a model since fresh data could potentially
invalidate it.

In the sequal, we seek to characterize model val-
idation in a way that will allow a convenient pa-
rameterization of all model validating uncertainty

sets with respect to available input/output measure-
ment for a given LFT structure. The idea is that
ultimately, the controls engineer will be able to in-
teractively shape the model validating uncertainty
weights based on his controller design and analysis
results. To this end, we �rst investigate a feasibility
condition (or necessary condition) for model valida-
tion. At each frequency, is there a pair (�; �) which
makes the output error in Equation (5) zero? Note
that once P , u, and � are speci�ed, � is completely
determined. The next step is to incorporate the con-
straints due to a priori structure in the uncertainties
which may limit the feasible (�; �) signals. This leads
to necessary and su�cient conditions for model val-
idation. The �nal step is to parameterize all model
validating sets of plant models.

It is clear that if the noise vector � is not re-
stricted by a �xed bound, then any output residual
can be zeroed out (without any help from �) if the
noise �lter V is non-singular. In this paper we as-
sume that the noise �lter V is given (as part of the
a priori model assumption or a reasonable model
determined from earlier system identi�cation exper-
iments) and the noise vector at each frequency is
norm bounded by 1. This output noise model can
be viewed as a model of a broad band exogenous
noise typi�ed by sensor noise. However, V , when
judiciously chosen can re
ect a priori bounds on the
noise intensity or power spectrum of the unknown
exogenous signal over a bandwidth of interest.

3 Parameterization of Model

Validating Sets

In this section, we develop a theory to e�ectively
parameterize all model validating uncertainty sets.
We begin by �rst addressing the question: when does
there exist a norm bounded or \admissible" noise �
with k�k � 1 and a � 2 Cm such that ey = 0? At
this point, notice that � is not required to be limited
by any given bound. To answer the above question
we �rst state a lemma, set some notation, and make
some observations.

Lemma 1:
Let A be a matrix whose singular value decom-

position (SVD) is

A =
�
U1 U2

� � �1 0
0 0

� �
V H1
V H2

�
; (7)

where U = [U1 U2] and V = [V1 V2] are unitary, �1

is diagonal and nonsingular, and the block matrix
partitionings are conformal. Let b be a vector and c
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a non-negative real constant. Then the inequality

kAx+ bk � c (8)

has a solution x if and only if

kUH2 bk � c: (9)

Then the general solution to the inequality (8) is
parameterized by

x = V1y + V2z (10)

y = ��11 (w � UH1 b) (11)

where z is arbitrary, and w is any vector with

kwk �
q
c2 � kUH2 bk

2: (12)

Proof of Lemma 1:
Note that x can always be written as V1y+V2z

by taking y = V H1 x and z = V H2 x. Now, from SVD
of A, AV2z = 0, and AV1y = U1�1y Therefore, for
arbitrary y and z, if x = V1y+V2z then kAx+bk2 �
c2 if and only if kU1�1y + bk2 � c2. Since U is
unitary, multiplying by UH preserves norm, so the
last inequality is equivalent to






�
UH1
UH2

�
U1�1y +

�
UH1
UH2

�
b






2

� c2: (13)

In its turn, this is equivalent to




 �1y + UH1 b

UH2 b






2

� c2: (14)

This can be rewritten as

k�1y + UH1 bk
2 � c2 � kUH2 bk

2: (15)

So on the one hand, if inequality (8) has a so-
lution, then that solution �ts the parameterization
given in Equations (10) { (12) and condition (9) is
satis�ed. On the other hand, if condition (9) is sat-
is�ed and �rst w and z and then y and �nally x
are picked according to the parameterization given
in Equations (10) { (12), then this x provides a so-
lution to inequality (8). 2

If we set M = [P21; V ], then the condition ey =
0 can be written as

M

�
�
�

�
= eoy: (16)

This provides the �rst necessary condition for the
existence of � with k�k � 1 and � 2 Cm for which
ey = 0; namely:

eoy 2 Im(M ) (17)

Observe that if V is invertible, then condition (17)
is true, since M has full row rank. Physically, this
means that if the noise model at output is allowed to
in
uence all output channels, then any output signal
can be validated (without any help from �) if the
noise is not constrained by a bound. Also, condition
(17) is su�cient for the existence of � 2 Cny and
� 2 Cm for which ey = 0. The remainder of this
discussion is aimed at �nding a condition to insure
that k�k � 1.

If condition (17) is satis�ed, then Equation (16)
is solvable, and a complete parameterization of the
solutions is given by�

�
�

�
=M+eoy + NM�; (18)

where NM is a matrix whose columns form a basis
for Ker(M ), and the parameter � is arbitrary. The
notation (�)+ denotes the Moore-Penrose pseudo-
inverse of (�).

If the subscripts (�)� and (�)� denote the row
partitioned components of (�) corresponding to the
� and � vectors, respectively, in Equation (18) or any

equation de�ning
n
�

�

o
, then Equation (18) implies

that

� = (M+)�e
o
y + (NM )�� (19)

and the problem is to characterize those � for which
k�k � 1.

This can be done by a direct application of
Lemma 1. First perform an SVD of (NM )� as in
Lemma 1:

(NM )� =
�
T1 T2

� � �1 0
0 0

� �
UH1
UH2

�
(20)

Then, by Lemma 1, Equation (19) can be solved for
� with k�k � 1 if and only if

kTH2 (M+)�e
o
yk � 1: (21)

Then, the general solution to Equation (19) is given
by

� = U1
 + U2 (22)


 = ��11 (�� TH1 (M+)�e
o
y) (23)

where  is arbitrary, and � is any vector with

k�k � bo :=
q
1� kTH2 (M+)�eoyk

2: (24)

In light of the de�nition in Equation (24), the nec-
essary condition in (21) implies bo � 0.

Lemma 2:
With the context and notation established in

the previous paragraphs, there exists an uncertainty
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signal � which, when combined with the given input
u and the nominal model P , produces an output
which is within the noise allowance of the observed
output y if and only if conditions (17) and (21) hold.
If these conditions are satis�ed, then all � are given
by the parameterization

� = �o + [A; B]

�
�
 

�
(25)

where A := (NM )�U1�
�1
1 , B := (NM )�U2, �o =

[I; �ATH1 ]M+eoy,  is arbitrary, and � satis�es
inequality (24).

Proof of Lemma 2:
The existence of � with the desired properties

is equivalent to the solvability of Equation (16) with
k�k � 1. We have already seen that Equation (16)
can be solved with k�k � 1 if and only if condi-
tions (17) and (21) hold, and all such solutions are
parameterized by Equations (22) { (24).

When a value of � as given by the parameter-
ization in Equations (22) { (24) is substituted in
Equation (18), it gives � as

� = (M+)�e
o
y + (NM )��: (26)

Using Equations (22) and (23) to eliminate � and
then 
 from this expression for � results in the ex-
pression for � given Equation (25). 2

Note that the existence aspect of Lemma 2 is
also given earlier in [2] in a more general context.
Lemma 2 gives a test resulting in either a yes or no
answer. It is only concerned with testing the richness
of the a priori LFT uncertainty structure and chosen
levels of measurement noise against a given set of
measured input and output data. Whether such �
can be generated through the LFT uncertainty and
how large it must be remains to be seen. If the
test in Lemma 2 fails, then the model is invalidated
either due to overly restricted levels of noise and/or
insu�ciently rich uncertainty LFT structure. What
course of action to take if Lemma 2 test fails is not
considered in this paper.

Suppose the above test in Lemma 2 passes. In-
deed, Lemma 2 gives a parameterization of the set
of all � that produces zero output error. That � be
given by this parameterization provides a necessary
conditions that � be a signal in a model validated
robust control design model. For su�ciency, � must
also satisfy the P �� feedback conditions

� = �� (27)

� = P11� + P12u (28)

Since � can be readily computed from Equation (28)

for a given �, we group Equations (25) and (28) as
follows:

�
�
�

�
=

�
�o
�o

�
+

�
P11
I

�
[A; B]

�
�
 

�
(29)

Here, �o := P11�o + P12u, and the norm of � is sub-
ject to condition (24). Equation (29) characterizes
the set of all (�; �) vectors that produces zero output
error. Of course, this set may be further constrained
by the uncertainty structure given by Equation (27),
which motivates the next lemma.

Consider a basic fact from linear algebra as
noted earlier in [7]:

Lemma 3:
If u 2 Cm, v 2 Cn, v 6= 0, then there exists

A 2 Cm�n such that Av = u, and ��(A) = kuk
kvk .

Remark: If Av = u, then kAk = ��(A) � kuk
kvk ,

so this lemma is asserting that an A of the minimal
possible norm does exist which maps v onto u. This
will �nd application in this paper in demonstrating
the existence of model validating blocks �i of mini-
mal possible norm.

Proof of Lemma 3:
If u = 0, then take A = 0. Now assume u 6= 0.

Let V be a unitary matrix whose �rst column is
v
kvk . V can be constructed by starting with a matrix

whose �rst column is v
kvk and the other n�1 columns

are n� 1 of the standard unit vectors. By omitting
the standard unit vector whose non-zero element is
in the same position as a non-zero component of v,
this matrix has linearly independent columns, and
V may be formed by applying the Gram-Schmidt
orthogonalization procedure. Let S be the n by m

diagonal matrix whose �rst diagonal element is kuk
kvk

and the remaining diagonal elements are arbitrary
real scalars which are no bigger than the �rst. Let
U be a unitary matrix whose �rst column is u

kuk .

Let A = USV H . Then (U; S; V ) is an SVD of A, so

��(A) = kuk
kvk ; and Av = u. 2

3.1 Full Complex Blocks Only

We now work toward determining when there exist
model validating � 2 D. To this end, we must start
with uncertainty signals � and � which satisfy Equa-
tion (29) and look for � for which Equation (27)
is also satis�ed. Partition � and � into components
corresponding to the block structure of � so that
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Equation (27) could be written as
8>>><
>>>:

�1
�
...
��

9>>>=
>>>;

=

2
6664

�1 0 � � � 0
0 �2 � � � 0
...

...
. . .

...
0 0 � � � ��

3
7775

8>>><
>>>:

�1
�2
...
��

9>>>=
>>>;
: (30)

Since, for each i = 1; . . . ; � , �i = �i�i, one can never
have both �i 6= 0 and �i = 0. However, the parame-
terization in Equation (29) does not guarantee that
these conditions never occur. To have some termi-
nology to use to indicate that we are excluding this
possibility, we make the following de�nition:

De�nition (D-realizable):
A signal pair (�; �) will be called D-realizable if,

for each i = 1; . . . ; � , either �i = 0 or �i 6= 0.

Satisfaction of the test in Lemma 2 allows a
cancellation of the nominal output error by a com-
bination of the �ctitious signals from the uncertainty
block and a norm bounded output noise while it will
be shown that Lemma 3 guarantees that a struc-
tured, full complex uncertainty always exists for any
D-realizable pair (�; �) which satisfy Equation (29).
We state an existence condition and a parameter-
ization of all model validating uncertainty sets as
follows:

Theorem 1 (structured, full complex blocks):
Suppose the conditions given in Lemma 2 are

satis�ed. Then, all model validating sets of uncer-
tainty are given by

SW� := f� 2 D : � = W�B; ��(�B) � 1g ; (31)

where
 2 Cn , k�k � bo, W := diag(w1In1 ; . . . ; w�In� )
is any diagonal complex matrix whose diagonal ele-
ments satisfy

jwij �
k�ik

k�ik
; i = 1; . . . ; �; (32)

and the (�; �) pair parameterized by � and  as given
in Equation (29) is D-realizable.

Proof of Theorem 1:
It is �rst demonstrated that each SW� de-

scribed in the statement of Theorem 1 is a model val-
idating set. Since the conditions of Lemma2 are sat-
is�ed, the � given by Equation (29) combines with a
noise � for which k�k � 1 to produce ey = 0. There-
fore, SW� will be model validating if there exists
� 2 SW� for which Equation (30) is satis�ed. We
construct this � block by block. If �i = 0, then �i

and �Bi may be taken to be 0 and ��(�Bi) = 0. If
�i 6= 0, then since (�; �) is a D-realizable pair, �i 6= 0
and by Lemma 3, there exists a �i with �i�i = �i
and ��(�i) = k�ik=k�ik. This means that if wi 6= 0
and �Bi := (1=wi)�i, then ��(�Bi) � 1 (if wi = 0,
�Bi may be chosen arbitrarily with ��(�Bi) � 1). It
follows that if

�B := diag(�B1;�B2; � � � ;�B� );

then ��(�B) � 1. Then � = W�B 2 SW� , so
SW� is model validating.

Now let SW be an arbitrary model validating
set. Let � be a model in SW which zeros the error
to within a noise level of magnitude bounded by 1.
Then there must exist signals � and � which satisfy
the P { � feedback conditions in Equations (27) and
(28) such that � zeros out the error with some noise
signal � of norm no more than 1. Then by Lemma
2, there must exist � satisfying condition (24) and
 such that � and � are expressed in terms of �
and  by Equation (29). Since �i = �i�i for all
i = 1; . . . ; � , the pair (�; �) must be D-realizable,
and

k�ik = k�i�ik � ��(�i)k�ik � jwijk�ik;

the last inequality holding because � 2 SW . This
establishes that SW = SW� . 2

Note that from the remark following Lemma 3,
for �xed parameters � and  , the smallest model
validating uncertainty set (as measured by the mag-
nitude of the uncertainty weight wi) is given by

jwij =
k�ik
k�ik

; i = 1; . . . ; � . This is the minimum norm

model validating result reported in [7].
Note that Lemma 2 can be viewed as a nec-

essary and su�cient condition for the existence of
a model validating set for an LFT with only struc-
tured full complex blocks. The issue that remains
is how large must the uncertainty size be for model
validation, which is addressed in Theorem 1.

From Theorem 1, note that any choice of uncer-
tainty set fwi; i = 1; . . . ; �g such that

jwij < inf
 ;�

k�k�bo

k�ik

k�ik
for some i (33)

will not be a model validating set. However, the
converse is not necessarily true. The in�mum might
not actually be achieved by any choice of � and  ,
and the values of � and  which give a good bound
on wi for one value of i might not be the same as
values which give good bounds for other values of i.
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3.2 With Repeated Scalar Blocks

For a more general uncertainty structure which in-
cludes repeated scalar blocks, we assume for conve-
nience, that all repeated scalar blocks are grouped
into the �rst r blocks in �. Then, Equation (30)
becomes8>>>>>>>><
>>>>>>>>:

�1
...
�r
�r+1
...
��

9>>>>>>>>=
>>>>>>>>;

= �

8>>>>>>>><
>>>>>>>>:

�1
...
�r
�r+1
...
��

9>>>>>>>>=
>>>>>>>>;

; where (34)

� = diag(�1In1 ; . . . ; �rInr ;�r+1; . . . ;�� ): (35)

A further restriction is imposed that �i 2
Fi; i = 1; . . . ; r where Fi is either the �eld R of
real numbers or the �eld C of complex numbers at
the designer's choosing. Since � contains repeated
scalar blocks, the condition in Lemma 2 or Theo-
rem 1 becomes only a necessary condition for model
validation. So, with repeated scalar blocks, we ask
whether, among all D-realizable pairs (�; �) satisfy-
ing Equation (29) with � subject to the norm con-
dition (24), a pair exists for which a � of the form
given in Equation (35) also exists so that Equation
(34) is satis�ed?

First, note that given any such D-realizable pair
(�; �), �r+1, . . ., �� always exist by Lemma 3, so
we need to consider only the existence of the �rst
r blocks, �1In1 , . . ., �rInr where �i 2 Fi. Let us
denote �n :=

Pr

i=1 ni = �m :=
Pr

i=1mi. A model
validating uncertainty set exists for a system with
repeated scalar block if and only if there exists �i 2
Fi, i = 1; . . . ; r,  , �, k�k � bo such that

�i = �i�i; i = 1; . . . ; r (36)

where from Equation (29):

�i = �o;i + [A; B]i

�
�
 

�
(37)

�i = �o;i + P11;i[A; B]

�
�
 

�
(38)

The subscript i indicates that the correct blocks of
rows have been selected for Equations (37) and (38)
to make sense in the context of Equation (29) and
the decompositions of � and � give in Equation (34).

The condition in Equation (36) can be seen as
a collinearity condition in the vector space Cni with
coe�cients from the �eld Fi. Consequently, a mea-
sure of distance between two subspaces can be used
(see for example [13])

dist(Fi)(�i; �i) := kP
(Fi)
�i

� P (Fi)
�i

k (39)

where P (Fi)
�i

and P (Fi)
�i denote orthogonal projections

onto the subspaces spanned over the �eld Fi by the
single vectors �i and �i, respectively. We summarize
our results as follows:

Theorem 2 (with repeated scalar block):
(a) Suppose the test in Lemma 2 passes. Then

a model validating set exists with �i = �iIni ; i =
1; . . . ; r; �i 2 Fi if and only if there exists  , and �
with k�k � bo such that the (�; �) pair parameterized
by � and  as given in Equation (29) is D-realizable
and

for each i = 1; . . . ; r
either �i = 0

or dist(Fi)(�i; �i) = 0
(40)

where �i and �i are given by Equations (37) and (38).
(b) Furthermore, if a model validating set ex-

ists, then all such sets are given by

SW� := f� 2 D : � = W�B; ��(�B) � 1g ; (41)

where
 2 Cn , k�k � bo, W := diag(w1In1 ; . . . ; w�In� )
is any diagonal complex matrix whose diagonal ele-
ments satisfy

jwij �
k�ik

k�ik
; i = 1; . . . ; �; (42)

and the (�; �) pair parameterized by � and  as given
in Equation (29) is D-realizable and satis�es condi-
tion (40).

In order to prove Theorem 2, we �rst introduce
a lemma.

Lemma 4:
For each �xed i, condition (40) holds if and only

if there exists a �i 2 Fi such that �i = �i�i.

Proof of Lemma 4:
Fix i. First, assume that condition (40) holds

for this i. If �i = 0, then �i may be chosen to be
0. If �i 6= 0, then, since dist(Fi)(�i; �i) = 0, then the
subspaces spanned over the �eld Fi by the single
vectors �i and �i are the same, so there must exist
�i 2 Fi for which �i = �i�i.

Now assume that there exists a �i 2 Fi such
that �i = �i�i. If either �i or �i is 0, then �i is also
0 and condition (40) holds. Assuming that neither
�i nor �i is 0, then �i is also non-zero, so �i and �i
span the same subspace of the vector space Cni over
the �eld Fi. It follows that dist

(Fi)(�i; �i) = 0. 2

Proof of Theorem 2:
First, suppose that there exist  and � with

k�k � bo such that the (�; �) pair parameterized by
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� and  as given in Equation (29) is D-realizable and
condition (40) holds. Then by Theorem 1, any set
SW� as given in Equation (31) with W satisfying
condition (32) is model validating. Let � 2 SW� 

be a model validating model. The key properties of
� are that, for each i = 1; . . . ; � , k�ik � jwij and
�i = �i�i. Because of condition (40), Lemma 4 tells
us that we can replace each �i for i = 1; . . . ; r by a
matrix of the form �iIni with �i 2 Fi and still have
�i = �i�i. Also, since �i = �i�i and W satis�es con-
dition (32), we still have k�ik � jwij with this new
�i. This establishes the \if" part of Theorem 2(a),
and shows that every model validating set with the
speci�ed repeated scalar blocks has the form shown
in Theorem 2(b).

Now suppose that a model validating set S ex-
ists which contains a model validating model � with
�i = �iIni ; i = 1; . . . ; r; �i 2 Fi. Theorem 1 tells us
that S must satisfy all of the conclusions of Theorem
2(b) except the condition (40). However, since for
each i = 1; . . . ; r, �i = �iIni , it follows from Lemma
4 that condition (40) is satis�ed. This completes the
proof that every model validating set falls under the
description given in Theorem 2(b), and completes
the \only if" part of the proof of Theorem 2(a). 2

4 Uncertainty Bound Opti-

mizations

With the parameterization of all model validating
uncertainty sets given by Theorems 1 and 2, a con-
trols engineer still faces the issue of what to do with
the remaining freedom. Speci�cally, one may ask:
can we �nd an \optimal" set from the given param-
eterization of all model validating uncertainty sets
? A more basic issue is: what is or what should an
\optimal" model validating set be?

For a single uncertainty block problem, a
smallest-normmodel validating uncertainty appears
to be a physically reasonable uncertainty bound
based on Ockham's razor argument in modeling
physical systems. However, for problems with a gen-
eral LFT uncertainty structure, a smallest norm un-
certainty bound (in a multi-objective sense) may not
have any concrete physical justi�cation. This is be-
cause for problems with multiple uncertainty blocks,
their relative numerical values may not necessarily
indicate their relative physical signi�cance. For ex-
ample, in robust stability [14], the determination
of whether a controller guaranteeing robust stabil-
ity exists or not may depend more strongly on the
distribution of the uncertainty bounds over a given
set of uncertainty components than on the size of

largest uncertainty component.
In this section, we outline two algorithms based

on constrained nonlinear optimization to determine
an uncertainty model which is, in some sense, \opti-
mal". One starting point for an optimization would
be for the designer to select a nominal plant model,
P , a matrix, V = diag(v1; . . . ; vny), of bounds on the
noise levels, and a matrix, W = diag(w1; . . . ; w� ),
of desired levels of uncertainty in the uncertainty
blocks. The important feature of W is that the rel-
ative sizes of the wi re
ect the designer's desires as
to the relative size of the uncertainty levels in the
di�erent blocks of a model validating � 2 D.

4.1 Existence Conditions

Two conditions have been given, (17) and (21),
which are necessary for the existence of model val-
idating sets in either the case that the uncertainty
structure consists of only full complex blocks (The-
orem 1) or contains some repeated scalar blocks
(Theorem 2). In the case of only full complex
blocks, these conditions are also su�cient for exis-
tence (Theorem 1). As a prelude to trying to opti-
mize uncertaintly levels, these necessary conditions
should be checked.

As noted earlier, if all of the output channels
are being modeled as having noise in them, so that
the V matrix is non-singular, then the matrix M
is of full rank, and condition (17) always holds. If
the diagonal matrix V does have zeros on the diag-
onal, then a check on condition (17) can be made
by �rst performing an SVD on M : M = UM�MV HM
where UM and VM are unitary and �M is a non-
negative real diagonal matrix of the same shape as
M , i.e., with more columns than rows, whose di-
agonal elements are in decreasing order. Condition
(17) also holds if M is full rank which is equivalent
to �M having no zero rows. If M is rank de�cient,
then partition UM = [UM1; UM2] where the block
UM;1 corresponds to the non-zero rows of �M and
the block UM;2 corresponds to the zero rows of �M .
Then a necessary and su�cient condition in the case
of rank de�cientM for condition (17) to hold is that
UM2e

o
y = 0.
To verify condition (21), the SVD ofM is com-

puted in the form:

M =
�
UM1 UM2

� � �M1 0
0 0

� �
V HM1

V HM2

�
(43)

In this decomposition, U = [UM1 UM2] and V =
[VM1 VM2] are unitary, �M1 is diagonal and nonsin-
gular, and the block matrix partitionings are confor-
mal. Then, in Equation (18), M+ = VM1�

�1
M1U

H
M1
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and NM can be taken to be VM2. Then, (NM )� is
decomposed as in Equation (20), and all of the com-
ponents are at hand to execute the test in condition
(21).

4.2 Full Complex Blocks

The idea is to normalize all uncertainties using de-
sired levels of uncertainty in the uncertainty blocks,
and then seek the smallest model validating scaled
set. Speci�cally, we propose using nonlinear con-
strained optimization with  and � as the design
parameters to �nd a minimal positive x such that
S(xW ) is a model validating set.

By Theorem 1, S(xW ) is a model validating set
if there exist  and � with k�k � bo such that

xjwij �
k�ik

k�ik
; i = 1; . . . ; � (44)

where the vectors � and � calculated from  and � in
Equation (29) form a D-realizable pair. This implies
that S(xW ) = S(xW ) �. By squaring and clearing
fractions, the previous inequality can be combined
with the D-realizability condition in the single in-
equality in Equation (46). This also has the advan-
tage of being a polynomial in x and the components
of � and �. The optimization problem can now be
stated:

Optimal uncertainty algorithm (Full block):

min
 ;�;x

x (45)

subject to the constraints

k�ik
2 � x2jwij

2k�ik
2 � 0; i = 1; . . . ; � (46)

x � 0 (47)

k�k � bo (48)

where �i and �i are given by Equations (37) and (38).

For the special case where the noise is known
or given, the noise can be incorporated in the eoy
vector and the bounded parameter � is not used in
the parameterization of � and �. This is the case
which is derived in the earlier minimumnorm model
validating solution in [7]-[9].

4.3 With Repeated Scalar Blocks

For the case with repeated scalar blocks, an opti-
mization algorithm similar to full complex block case
but with the additional collinearity condition is pro-
posed. Similarly, by Theorem 2, S(xW ) is a model
validating set if there exist  and � with k�k � bo

such that condition (40) is satis�ed where �i and �i is
a D-realizable pair parameterized by Equations (37)
and (38). Instead of using the distance condition in
Equation (40) to guarantee existence, Equation (36)
is used. The tradeo� is that Equation (40) leads
to a quartic in the design variables while Equation
(36) leads to only a quadratic at the expense of addi-
tional variables, �1,. . ., �r . Note that the collinearity
condition in Equation (36) for the set of r repeated
scalar blocks and the D-realizability condition leads
to a simpli�cation of the �rst r set of inequality con-
straints in Equation (46). The optimization problem
can now be stated:

Optimal uncertainty algorithm (With Repeated
Scalar block):

min
 ;�;�1;...;�r;x

x (49)

subject to the constraints

�i 2 Fi (50)

j�ij
2 � x2jwij

2 � 0; i = 1; . . . ; r (51)

k�ik
2 � x2jwij

2k�ik
2 � 0; i = r + 1; . . . ; � (52)

�i = �i�i; i = 1; . . . ; r (53)

x � 0 (54)

k�k � bo (55)

where �i and �i are given by Equations (37) and (38).

Remark: In Section 4.1, tests were given which
were necessary, but not su�cient for the existence
of a model validating set for the case that some un-
certainty blocks have repeated scalar blocks. Such a
su�cient condition is found by the location of a fea-
sible point in the preceeding optimization problem.
In particular, in order to have a model validating
set in this case, it must be necessary to satisfy con-
straints (50) and (53).

To summarize, the above optimization algo-
rithm has various physical signi�cances. The cost
in Equation (49) represents a positive scaling fac-
tor of the normalized (by user provided desirable
weights) uncertainty norm bounds for each compo-
nent. Inequalities (51) and (52) represents the scaled
bounds on r repeated scalar uncertainties and the
� �r non-repeated full complex uncertainty bounds,
respectively. A violation of these inequalities im-
plies that xwi is not an upper bound on the ratio of
signal norms, i.e., it fails as an uncertainty bound.
Clearly, inequalities (51) and (52) will more likely be
satis�ed with larger weights xwi, which makes intu-
itive sense. The collinearity condition in Equation
(53) represents the necessary structural constraints
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due to the repeated scalar uncertainties. Inequality
(54) is the non-negative condition on the uncertainty
scale factor. Note that x � 1 indicates that the cur-
rent scaling makes the uncertianty bounds larger or
equals to the a priori target while x < 1 indicates
that there exists a smaller (for every component)
model validating set than the a priori target. Fi-
nally, inequality (55) represents the limited freedom
available as an \admissible" noise.

Consider an important special case where the
repeated scalar blocks arises due to parametric un-
certainties which are independent of frequencies. To
re
ect this condition in applications, one may wish
to specify a �xed bound (i.e., a parametric error al-
lowance) for the parametric uncertainties. This can
easily be done by eliminating the scale factor x in
the r inequalites in Equation (51). The optimization
problem then tries to solve for the smallest non-
parametric/unmodeled dynamics uncertainty sub-
ject to bounded noise and parametric uncertainties.

5 Concluding Remarks

For models of physical systems where the uncer-
tainty is described by a linear fractional transforma-
tion with all unknown but bounded exogenous dis-
turbance occuring at the measured outputs, feasibil-
ity conditions for model validation are derived. For
the case with only structured full complex blocks,
the feasiblity condition can be readily tested and in-
volves only numerically easy constant matrix checks
at all discrete frequencies. The feasibility test is ac-
tually a test on the richness of the a priori uncer-
tainty structure with some help from a frequency
weighted unknown but bounded measurement noise
allowance. We have shown that for the case with
only structured full complex blocks, this feasibility
condition is also necessary and su�cient condition
for the existence of a model validating uncertainty
set. It is signi�cant that this necessary and su�-
cient conditions hold for an arbitrary number of full
complex blocks. For the more general case when
repeated scalar uncertainties are also present, we
have shown that an additional condition involving
a collinearity test is required for model validation
feasibility.

The feasibility test has a binary outcome. If it
fails, it indicates either a lack of richness of the a pri-
ori uncertainty structure (because no bounds are as-
sumed for the structured uncertainties) and/or that
the frequency weighted 2-norm measurement noise
allowance is too small. If the test passes, we have
shown how all model validating uncertainty sets in

D for the nominal plant P and the given noise level
V can be parameterized. Changing any or all of
D, P , and V would produce a parameteriation of
additional model validating sets of uncertainty. Ob-
viously, model validating sets of uncertainties are
in general underdetermined so that a useful general
modeling/design tool should easily span the large
subset of model validating uncertainties. For the
above reason, we formulate two optimization algo-
rithms based on two metrics of what is basically a
multi-objective problem.

Preliminary application results are encouraging
(see the illustrative example in the recent work [11])
but further theoretical re�nements, algorithmic im-
provements, and validation through actual applica-
tion on laboratory testbeds of the proposed method-
ology is needed.
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